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Abstract 

We study compact spacelike hypersurfaces (necessarily with non-empty boundary) with constant 
mean curvature in the (n + 1)-dimensional Lorentz-Minkowski space. In particular, when the 
boundary is a round sphere we prove that the only such hypersurfaces are the hyperplanar round 
balls (with zero mean curvature) and the hyperbolic caps (with non-zero constant mean curvature). 
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1. Introduction 

From a physical point of view, the interest of constant mean curvature spacelike hyper- 
surfaces in Lorentzian spaces is motivated by their role in the study of different problems in 
general relativity. Actually, in his classical paper [9], Lichnerowicz showed that the Cauchy 
problem of the Einstein equation with initial conditions on a maximal (zero mean curva- 
ture spacelike) hypersurface has a particularly nice form, reducing to a linear differential 
system of first order and to a non-linear second order elliptic differential equation. As for 
spacelike hypersurfaces with non-zero constant mean curvature, they are convenient for 
studying the propagation of gravitational waves [ 10,151. We also refer the reader to the 
survey papers [7,10], and references therein for other reasons justifying their importance in 
relativity. 
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From a mathematical point of view, their interest is also motivated by the fact that these 
hypersurfaces exhibit nice Bernstein-type properties. Actually, the Bernstein problem for 
maximal hypersurfaces in the Lorentz-Minkowski space L"+' was first studied by Calabi [5] 
(for it 5 4), and Cheng and Yau [6] (for arbitrary n), who proved that the only complete 
maximal hypersurfaces in Ln+’ are the spacelike hyperplanes. In the case of the de Sitter 
space S, ‘+‘, Akutagawa [l] showed that if a complete spacelike hypersurface has constant 
mean curvature H satisfying 0 ( H2 ( 1 when n = 2, or 0 5 H2 < 4(n - l)/n2 
when n 1: 3, then the hypersurface must be totally umbilical. Related to this result, 
Ramanathan [13] (for n = 2) and Montiel [l l] (for arbitrary n) showed that the only 
compact spacelike hypersurfaces with constant mean curvature are the totally umbilical 
ones. 

In this paper we study compact spacelike hypersurfaces (necessarily with non-empty 
boundary) with constant mean curvature in L n+’ The case n = 2 was previously con- . 
sidered by the authors, jointly with L6pez, in [2], where it was shown that the only 
such surfaces spanning a circle are the planar discs and the hyperbolic caps. Here we 
generalize that work to the n-dimensional case, obtaining the following uniqueness 
result. 

Theorem. The only immersed compact spacelike hypersu$aces in L”+ ’ with constant mean 
curvature H and spherical boundary are the hyperplanar balls (H = 0) and the hyperbolic 
caps (H # 0). 

Our approach is based on two general integral formulas: a flux formula (Lemma 1) and an 
integral inequality (Proposition 3). The two-dimensional version of these integral formulas 
was obtained in [2], using in an essential way the facts that the surface M carried a complex 
structure and its boundary aM was a curve. In this paper, by means of an alternative proof 
which works for any dimension, we extend these formulas to the general n-dimensional 
case. We also derive some consequences for the case where the boundary is an embedded 
submanifold contained in a hyperplane of L"+l . 

2. Preliminaries 

LetLn+‘denotethe(n+l)- ‘m di ensional Lorentz-Minkowski space, that is, the real vector 
space Rn+l endowed with the Lorentzian metric 

(9 )=ew2+- . + wGz)2 - M&+d2, 

where (xl,..., xn+i) are the canonical coordinates in Rn+‘. A smooth immersion x : 
M -+ L”+’ of an n-dimensional connected manifold M is said to be a spacelike hyper- 
sueace if the induced metric via x is a Riemannian metric on M, which, as usual, is also 
denoted by ( , ). Observe that (0, . . . , 0, 1) is a unit timelike vector field globally defined 
on Ln+’ , which determines a time-orientation on L ‘+’ Thus we can choose a unique unit . 
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normal vector field N on M which is a future-directed timelike vector in L"+' , and hence 
we may assume that M is oriented by N. 

In order to set up the notation to be used later, let us denote by V” and V the Levi-Civita 
connections of Lnf’ and M, respectively. Then the Gauss and Weingarten formulas for M 
in Ln+’ are written, respectively, as 

V;Y = VxY - (AX, Y)N, (1) 

and 

A(X) = -V;N, (2) 

for all tangent vector fields X, Y E X(M), where A stands for the shape operator associated 
to N. 

Throughout this paper we will deal with compact spacelike hypersurfaces immersed in 
Ln+' . Let us remark that there exists no closed spacelike hypersurface in L”+’ . To see this, 
let a E Ln+’ be a fixed arbitrary vector, and consider the height function (a, x) defined on 
the spacelike hypersurface M. The gradient of (a, x) is 

V(a, x) = aT = a + (a, N)N, 

where uT E X(M) is tangent to M, so that 

IV@, x)12 = (a, a) + (a, N)2 L (a, a). 

(3) 

In particular, when a is spacelike the height function has no critical points in M, so that 
M cannot be closed. Therefore, every compact spacelike hypersurface M necessarily has 
non-empty boundary aM. As usual, if Z: is an (n - 1)-dimensional closed submanifold in 
L ‘+I, a spacelike hypersurface x : M --+ L”+’ is said to be a hypersurface with boundary 
C if the restriction of the immersion x to the boundary aM is a diffeomorphism onto 
c. 

3. A flux formula 

In what follows, x : M --+ L”+’ will be a compact spacelike hypersurface with bound- 
ary i3M, and we will consider M oriented by a unit future-directed timelike normal vector 
field N. The orientation of M induces a natural orientation on aM as follows: a basis 

{VI,..., un_t) for T,,(aM) is positively oriented if and only if {u, ut, . . . , v,-1} is a posi- 
tively oriented basis for T, M, whenever u E TP M is outward pointing. We will denote by 
v the outward pointing unit conormal vector along a M. 

For a fixed arbitrary vector a E L r~-‘, let us consider the height function (a, x) defined 
on M. From the expression for the gradient of (a, x) in (3), and using (1) and (2), we see 
that the Hessian of (a, x) is given by 

V*(u, x)(X, Y) = (VxuT, Y) = -(a, N)(AX, Y) 
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for X, Y E X(M). Therefore, the Laplacian of (a, x) is 

A@, x) = -(a, N)tr(A) = nH(a, N), (4) 

where H = -(l/n)tr(A) defines the mean curvature function of M. Integrating now (4) 
on M we have by the divergence theorem that 

(v, a) dS = n 
s 
H(N, a) dV. (5) 

aM M 

Here dV stands for the n-dimensional volume element of M with respect to the induced 
metric and the chosen orientation, and dS is the induced (n - 1)-dimensional area element 
on aM. 

On the other hand, let us consider the differential (n - I)-form 0, defined on M by 

@,(X1 9 . . ., X,-l) = det(x, XI, . . . , X,-l, a) 

forxl,..., X,-l E X(M), where det stands for the determinant in Rnf ’ . Using (1) it is 
easy to see that 

(VY@a>(Xl, . . .3 L-l> 

=det(Y,Xl,..., X,_I,U) 

n-1 

- c (AXi, Y)det(x, X1,. . . , Xi-l, N, Xi+19 . . . , X,-I, U) 
i=l 

for Y E X(M). Therefore, the exterior derivative of 0, is given by 

dO,(Xl, . . . ,X,)=~(-l)‘(VxiO,)(X*,...,ai,...,X,) 
i=l 

=ndet(Xl,. .., X,,u). 

In other words, 

d@, = +(a, N) dV. (6) 

When the mean curvature H is constant, Eq. (6) allows us to express the integral on 
the right-hand side of (5) as an integral over the boundary. This yields a flux formula for 
immersed spacelike hypersurfaces with constant mean curvature in the Lorentz-Minkowski 
space. The corresponding formula for hypersurfaces in Euclidean space can be found in [ 141 
(see also [8,12] for the case of hypersurfaces in hyperbolic space). 

Lemma 1 (Flux formula). Let x : M -+ L ‘+’ be a spacelike immersion of a compact 
hypersurface with boundary a M. If the mean curvature H is constant, then for any fixed 
vector a E L”+’ we have 
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P (u, a) dS = -H O,, 

a.44 aM 

where v is the outward pointing unit conormal vector along 8 M and 

O,(UI, . . . , IJ,_I) = det(x, ~1,. . . , ~~-1, a) 

forvl,..., u,_l tangent to aM. 

Let us assume from now on that the boundary Z = x (aM) is contained in a fixed 
hyperplane l7 of Lnf ’ . Since 2Y is closed, it follows that the hyperplane I7 is spacelike. We 
can assume without loss of generality that I7 passes through the origin and I7 = a’, for a 
unit future-directed timelike vector a E L ‘+’ . As a first application of the flux formula we 
have the following result. 

Proposition 2. Let x : M * L ‘+’ be a spacelike immersion of a compact hypersulface 
bounded by an (n - 1)-dimensional embedded submanifold .Z = x(aM), and assume that 
22 is contained in a hyperplane I7 of L ‘+’ Let a be the unitfuture-directed timelike vector . 
in Ln+’ such that l7 = a’. If the mean curvature H is constant, then theflux 

does not depend on the hypersu$ace, but only on the value of H and .?T. Actually, 

f 
(v, a) dS = -nH vol(Q), (7) 

ah4 

where 52 is the domain in Ii’ bounded by C. 

ProoJ From Lemma 1 it suffices to show that 

d 0, = n vol(Q). 

Since C = x(aM) is an embedded closed hypersurface in the spacelike hyperplane l7, a 
well-known (Euclidean) formula gives 

vol(C2) = $ 
4 

(x, 9) dS, 

aM 

where u is the outward pointing unitary normal to Z: in I7. Here, we are considering 
on I7 the natural orientation determined by a. Observe that if (el , . . . , e,_ 1) is a (locally 
defined) positively oriented tangent orthonormal frame along 8 M, then ( n , e 1, . . . , e, _ 1, a } 
is positively oriented and det(n, et, . _ , e,_ 1, a) = 1. This implies that 

@,(el, . . . , en-l) = (x9 rl), 
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so that 

+=p (x, q) dS = n vol(D), 

ah4 akf 

which finishes the proof. 0 

It is interesting to remark that, in contrast to the Euclidean case, Eq. (7) does not imply 
here any restriction on the possible values of the constant mean curvature. For example, if 
Z = S”-’ is an (n - l)-dimensional sphere of radius one and M is an immersed compact 
hypersurface in the Euclidean space bounded by 9-l with constant mean curvature H, 
then the corresponding flux formula implies that 0 _( ]H] 5 1 (see [3,4]). However, in the 
case of the Lorentz-Minkowski space, the family of hyperbolic caps 

MA = {n E L”+’ : (x,x) = -2,o < x,+1 5 ~cs), 

with 0 < ), < 00, describes a family of spacelike compact hypersurfaces in L”+l bounded 
by S”-’ with constant mean curvature HA = l/h. 

4. An integral inequality 

In this section we will derive an integral inequality which, jointly with Proposition 2, 
will yield our main result. Given a fixed arbitrary vector a E L”+‘, let us consider now the 
function (a, N) defined on M, whose gradient is 

V(a, N) = -A(aT). 

From here, and using (1) and (2), it can be seen that the Hessian of (a, N) is given by 

V2(a, N)(X, Y) = -((VA)(aT, X), Y) + (a, N)(AX, AY), 

for X, Y E X(M). Using now the Codazzi equation, 

(VA)(aT, X) = (VA)(X, aT), 

it follows that the Laplacian of (a, N) is 

A@, N) = -tr(VUTA) + (a, N)tr(A2) = n(VH, a) + (a, N)tr(A2). (8) 

When H is constant, from (4) and (8), we obtain that 

A(H(a, x) - (a, N)) = -(a, N)(tr(A2) - nH2). 

This equation is the key for the proof of the following result. 

(9) 

Proposition 3. Let x : M + L nf’ be a spacelike immersion of a compact hypersuflace 
bounded by an (n - 1)-dimensional embedded submanifold .E = x (aM>, and assume that 
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E is contained in a hyperplane I7 of L ‘+’ L.et a be the unit future-directed timelike vector . 
in L”+‘such that I7 = a’. If the mean curvature H is constant, then 

- Hc(u, a)2 dS 5 nH2 vol(fi), (10) 

tlM 

where C5’ is the domain in ll bounded by Z: and Hz stands for the mean curvature of C 
in l7 with respect to the outward pointing unitary normal r,~ Moreovel; the equality holds 
if and only if M is a totally umbilical hypersurface in L"+' . 

Proofi Integrating (9) on M we obtain that 

I 
((A(u), a) -t H(u, a))dS = - 

s 
(a, N)(tr(A2) - nH2) dV. 

aI!4 M 

Since N and a are both unit future-directed timelike vectors, then (a, N) 5 -1 -C 0. 
Moreover, it follows from the Schwarz inequality that tr(A2) - nH2 2 0, and the equality 
holds if and only if M is a totally umbilical hypersurface. Therefore, 

4 
((A(v), a) + H(v, 4) dS S 0, (11) 

8M 

with equality if and only the hypersurface is totally umbilical. Let {et, . . . , e,_l ) be a 
(locally defined) positively oriented tangent orthonormal frame along aM. Since (a, x) = 
Oontheboundary,then(a,e~)=Oforevery1~i~n-l,andaT=(a,u)u,sothat 

n-l 

(A(u), a) = (v, a)(A(v), u) = (v, a) 
( 

WA) - x(A(ei), e;) 
) 

(12) 
i=l 

Let Ax denote the shape operator of E with respect to q. Then, for every 1 5 i 5 n - 1 
we have 

Vze; = C(Vi e,, ei)ej + (V,qei, u)u - (A(ei), ei)N, 
j#i 

and also 

Vi.e; = CWGei, ej)ej + (Ac(ei), ei)q, 
i#i 

so that 

(ACei), ei) = (Ax(ei), ei)(v, N) = -(Az(ei), ei)(u, 4, 

since (q, N) = -(u, a). Using this in (12) we get 

(A(v), a) + H(u, a) = -(n - l)H(u, a) + (v, ~)~tr(Ac) 

= -(n - l)H(u, a) + (n - l)Hc(u, a)2. 
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From here and using Proposition 2, (11) becomes 

i 
HZ{“, a)*dS 2 H 

i 
(u, a) dS = -nH* vol(Q). 

a.44 aM 

5. Proof of the theorem 

When the boundary Z = x (a M) is a round sphere Sn- t (r) of radius r > 0, Propositions 
2 and 3 imply our uniqueness result. In that case Hz = - 1 /r , and inequality ( 10) says that 

(u, a)*dS 5 nH* r vol(B”(r)) = H*r* area(Sn-’ (r)), (13) 
aM 

with equality if and only if M is totally umbilical. On the other hand, by Proposition 2 we 
also know that 

f 
(v, a) dS = -nH vol(B”(r)) = -Hr area(S-l(r)), 

aM 

and the Cauchy-Schwarz inequality yields 

f 
(u, a)* dS > H*r* area(!T’(r)). 

aM 

Therefore, we have the equality in (13) and the result. 
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